
 System Dynamics using Modelica

Introduction to system dynamics

Population models

Predator prey systems

Forrester's WORLD2 model

Manufacturing

Internals of the SystemDynamics library

Appendix

1/24

javascript:decrement()
javascript:increment()

 Introduction to System Dynamics
Simulations in biology, ecology or economy:

highly complex systems

causal relationships often unclear

simulation as testbed to check new ideas

mathematical formulation
usually as differential equation
often too abstract for users
functional relationships often based on empiric data (tables, plots)

graphical modeling with system dynamics diagramms
emphasis on causal relationships
only very few general blocks
mathematical relations are hidden, equations are defined as parameters
several commercial modeling and simulation environments, e. g. Stella, Vensim,
Simile

invented by Jay Forrester around 1955

Basic building blocks of system dynamics diagrams:

Reservoir (or stock)
corresponds to a state variable
needs initial value

Flow
defines rate of change (positive/negative) of a reservoir
connects reservoir with another reservoir or external sources/sinks (cloud)
is symbolized as a valve

Converter
external parameter or auxiliary variable
computed using other values
concrete computation is hidden as parameter

Connector
specifies, which variables affect others

graphical representation

Physical modeling:

models built from "physical" components (masses, resistors, valves) instead of

2/24

javascript:decrement()
javascript:increment()
http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx
https://vensim.com/
http://simulistics.com/index.htm

integrators or function blocks

connecting lines represent "physical" connections (flanges, wires, pipes) instead of
signals

internal representation uses Modelica language
object-oriented, equation-based modeling language
provides means for graphical representation of components and models
huge free library of components (MSL = Modelica standard library)

simulation
equations come from components and connections
automatically combined, simplified (highly non-trivial!) and numerically solved

modeling and simulation environment
several commercial programs
open source: OpenModelica

Modelica library SystemDynamics.mo:

based on SystemDynamics 2.0 by Cellier

design changed to cope with blocks like Oven

using library in OpenModelica
start OMEdit
load base library SystemDynamics.mo und examples library
SystemDynamicsExamples.mo
both are displayed in Libraries pane

design of base library
packages Reservoirs, Flows and Converters
predefined components for common equations
user-defined components necessary for special mathematical relations
definition of such components easy
packages Interfaces contains supporting auxiliary components

design of example library
Examples contains executable models
packages Examples for executable models, AuxComponents for auxiliary
components
required data sets in package Resources

Simple growth model Inflow:

only one state variable

growth (inflow)
defined by flow (valve symbol)
rate variable (i. e. amount/time)

defined by ConstantConverter
diagram

3/24

https://openmodelica.org/
https://github.com/modelica-3rdparty/SystemDynamics

Building the model:

pick up components from library pane and drag them into model pane
form Reservoirs: Stock, CloudSource
from Flows: Flow
from Converters: ConstantConverter

connect components

set parameter values (after double click on a component)
initial value of reservoir (Stock): m0 = 2
inflow rate (ConstantConverter): constValue = 0.5

Running simulation:

check model

setup and run simulation
Stop Time = 10
automatically runs simulation
→ one output window is shown

change window size (plot window icons "hidden" top-right)

choose variable: Inflow.stock1.out1

use switch at bottom-right to retrun to model pane

Model Outflow:

mirror image of Inflow

4/24

initial value m0 = 4
simulation

stock value becomes negative
is a negative level meaningful?

alternative: use SaturatedStock with minLevel = 0

result

5/24

 Population models
Basic model:

stock describes size N of population

number of births and deaths proportional to N

G = g N
T = t N

rates g, t in ConstantConverter blocks

products with Mult2Flow blocks

model population1

start with N(0) = 10

result for g = 0.03, t = 0.01: exponential growth

Limited growth:

scarcity of resources → death rate grows for large population

approach: death rate proportional to N

t = (N/Nb) tb

implement equation with MultPower3Converter

out = in1k1 * in2k2 * in3k3

N: in1 = stock.out1, k1 = 1
tb: in2 = 0.01 (coming from ConstantConverter), k2 = 1
Nb: in3 = 50 (coming from ConstantConverter), k3 = -1

complete model population2

result
change plot range with plot setup to [0, 150]

6/24

javascript:decrement()
javascript:increment()

Fixed capacity:

changes in population3
death rate stays constant for small N
N has upper limit Nk

idea

no predefined converter for this formula

replace MultPower3Converter by CapacityConverter using Modelica code

block CapacityConverter
 extends SystemDynamics.Interfaces.GenericConverter3;
equation
 out1 = in2/(1 - in1/in3);
end CapacityConverter;

create new component
in OpenModelica: File/New/New Modelica Class
Name: CapacityConverter
Extends: SystemDynamics.Interfaces.GenericConverter3
Insert in class: SystemDynamicsExamples.AuxComponents

set Nk = 225

result
similar to previous version

7/24

"curve fits data" does not imply "model mechanism is correct"!

8/24

 Predator prey systems
Modeling of predator and prey populations:

state variables Nb, Nr for number of prey and predator animals

inflows for births, outflows for deaths

flows like in population models
constant birth and death rates
number of births and deaths proportional to size of population

interaction between the two species
F = number of prey hits
proportional to Nb and Nr
directly increases number of prey deaths Tb
decreases number of predator deaths Tr
demand B = number of prey animals (per time) needed by a predator to survive

concrete relations (Lotka-Volterra equations)

model PredatorPrey1

results

9/24

javascript:decrement()
javascript:increment()

typical oscillations
closed loop in phase diagram ≙ constant of motion

increase of initial number of prey animals from 50 to 500

reduce solver tolerance to 1e-8 !
Nr rises immediately
both populations collapse but recover after a long time

10/24

very steep oscillations
still a closed loop in phase diagram
very unnatural behaviour!

problem
number of catches per predator Fr = F / Nr = f Nb rises with Nb
idea: limit Fr to a saturation value Fr,max

Functions defined by graphs:

saturation curve Fr = sat(f Nb) known only qualitatively

defined explicitely by a set of points and linear interpolation

implemented with component Mult2GraphConverter
multiplies its inputs and applies interpolated function to the product
points defined in catchesPerPredator.txt
values defined in Modelica as constant array in
SystemDynamicsExamples.Resources.PredatorPrey.cpp

Results of PredatorPrey2B:

Nb(0) = 50 → same results as before (Fr far from saturation)

Nb(0) = 500

11/24

file:///daten/peter/output-pj/talks/2022-SystemDynamics/html/catchesPerPredator.txt

oscillations get stronger!

reason: Tr becomes negative

happened already for PredatorPrey1, but caused limited damage due to constant
of motion

12/24

 Forrester's WORLD2 model
Modeling the world with WORLD2:

5 state variables
size of (human) population P
capital investment CI
fraction of capital invested in agriculture CIAF
amount of natural resources NR
pollution POL

additional variables to quantify relationships, e. g.
quality of life QL
per capita food ratio FR
capital investment ration CIR

relations between the variables
plausible equations
graphical functions based on statistical data
qualitative graphical functions

complete model and simulation results described in: Forrester, World Dynamics (1970)

attracted great international attention

Complete system dynamics model:

based on standard components, using only one special component ECIRConverter

13/24

javascript:decrement()
javascript:increment()

enhancement in Modelica: introduction of submodels

simulated time range 1900 - 2100

parameters adapted to reproduce values of 1970

results of selected variables

Consequences:

lots of criticism, scientifically and political

14/24

further development: much more complex model WORLD3

qualitatively similar results

published in "Limits to growth" (1972), still highly debated

detailed discussion of WORLD2, implemented in Vensim

15/24

https://vimeo.com/177495412?embedded=true&source=video_title&owner=8718349

 Manufacturing
Conveyor belt (Conveyor):

special stock element introduced in Stella, redesigned in Modelica

functionality
operates at clock ticks tn = t0 + n Δt
stores input value
outputs the value after a given transit time t tr

example
inflow = 5 (per time unit)
t0 = 0.1, Δt = 1, ttr = 3

results

details
discrete simulation at sample times tn = 0.1 + n
needs discrete stock component StockD
input flow is 5 for 2.5 ≤ t ≤ 13 (implemented with TimeSwitchedConverter)
initial waiting time < Δt is rounded to Δt

Manufacturing machine (Oven):

16/24

javascript:decrement()
javascript:increment()

another discrete stock from Stella

baking tray model: fill tray, bake, unload

parameters initialLoad, capacity, cookingTime
processing phases

loading: get input, until capacity is reached
production: wait until cookingtime ends
unloading: output complete content, immediately start with reloading

example with initialLoad = 0 , capacity = 3 , cookingTime = 2

results

Model of a simple assembly line:

delivery of 2 units per time unit of raw material

stored in inputStore with initial stock = 7
17/24

path2 transports 2 parts per time unit

machine1 has a capacity of 4 and needs 2 time units

conveyor12 has a transport time of 2 time units

intermediateStore for buffering, initially empty

path5 transports 2 parts per time unit

machine2 has a capacity of 2 and needs 1 time unit

outputStore for final products, initially empty

Simulation results of model AssemblyLine:

expectation: throughput of 2 parts per time unit

inventory of the stores

problem
inputStore grows continually
uneven growth of outputStore
average throughput: 1.5 parts per time unit
all stations allow for a throughput of 2 parts per time unit

cause

18/24

behavior at machine1

path2 transports 2 parts per time unit
can't deliver during production time of machine1
loading of machine1 needs 4 parts, but only 2 parts can be delivered in one step

solution:
path2 must be extended to transport 4 parts per time unit

19/24

simulation shows necessary sizes of stores under optimal conditions

20/24

 Internals of the SystemDynamics library
Basic idea from Cellier:

notation
flow line denoted by large arrow
signal line denoted by (standard) small arrow

Connector
standard input/output connectors for signal ports
input/output connectors for flow with different icons
(MassInPort/MassOutPort)

Converter
block, i. e. dedicated input and output ports

Flow
computes flow dm from inputs
distributes dm via MassOutPorts to reservoirs

Reservoir
gets dm from MassInPorts
subtracts and integrates to get stock m

all ports have static causality (i. e. are designated inputs or outputs)

Problems with causality:

model Outflow
usually flow defines dm
stock is (almost) empty → reservoir (Stock) defines dm

model TestConveyor
reservoir (Conveyor) always defines dm
value provided by flow is ignored

model TestOven
output flow (0 or capacity) given by reservoir (Oven)
input flow depends on phase
loading: given by flow and reservoir together
production: given by reservoir (0)

model AssemblyLine
inflow of inputStore defined by path1
inflow of machine1 depends on stock of inputStore, value of path2 and state
of machine1

Conception of the connector MassPort:

mass flow dm defined as flow variable

corresponding potential variable data

21/24

javascript:decrement()
javascript:increment()

contains amount defined by reservoir

additional integer variable info defines, what to do with data
info = 0 → discard it, dm = dmflow
info = 1 → use it directly, dm = data
info = 2 → reservoir is restricted, dm = min(data, dmflow)

info has fixed causility: output of reservoir, input of flow

two connectors

connector MassPortR "mass port of reservoirs"
 flow Real dm;
 Real data;
 output Integer info;
end MassPortR;

connector MassPortF "mass port of flows"
 flow Real dm;
 Real data;
 input Integer info;
end MassPortF;

Practical considerations:

several predefined Flow and Converter models implementing common equations

defining special equations easy using generic blocks in Interfaces
tabular data not as files, but as constant arrays

several tables can be combined in one resource class

22/24

 Appendix

Homepage of OpenModelica

Webpage "System dynamics library in Modelica"

Modelica library SystemDynamics

Modelica library SystemDynamicsExamples

Literature

23/24

javascript:decrement()
javascript:increment()
https://openmodelica.org/
http://www.peter-junglas.de/fh/simulation/systemdynamics.html
http://www.peter-junglas.de/fh/simulation/download/SystemDynamics.mo
http://www.peter-junglas.de/fh/simulation/download/SystemDynamicsExamples.mo

 Literature
1. Introduction to system dynamics with lots of examples:

Hannon B, Ruth M: Dynamic Modeling. Springer, New York, 2nd edition, 2001.

2. Description of WORLD2:

Forrester JW: World Dynamics. Pegasus Communications, 1971.

3. Textbook on modeling and simulation with chapter about system dynamics with Modelica
(in German):

Junglas P: Praxis der Simulationstechnik. Europa-Lehrmittel, Haan-Gruiten, 2014.

4. Basic implementation of system dynamics in Modelica:

Cellier FE: World3 in Modelica: Creating System Dynamics Models in the Modelica
Framework. In: Proc. 6th Int. Modelica Conf., Bielefeld, Germany, 2008; p. 393 – 400.

5. More complete implementation of system dynamics in Modelica:

Junglas, P: Causality of System Dynamics Diagrams, SNE Simulation Notes Europe
26/3 (2016), 147-154.

24/24

javascript:decrement()
javascript:increment()

	System Dynamics using Modelica
	Introduction to System Dynamics
	Population models
	Predator prey systems
	Forrester's WORLD2 model
	Manufacturing
	Internals of the SystemDynamics library
	Appendix
	Literature

